
New conditional symmetries and exact solutions of the nonlinear wave equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 8727

(http://iopscience.iop.org/0305-4470/31/43/014)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 02/06/2010 at 07:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/43
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 8727–8734. Printed in the UK PII: S0305-4470(98)91530-X

New conditional symmetries and exact solutions of the
nonlinear wave equation

Renat Zhdanov† and Olena Panchak
Institute of Mathematics, 3 Tereshchenkivska Street, 252004 Kiev, Ukraine

Received 11 February 1998, in final form 2 June 1998

Abstract. We have constructed the new class of conditional symmetries of the nonlinear wave
equation in 1+3 dimensions. These symmetries enable us to obtain broad families of new exact
solutions of the nonlinear wave equation containing up to the four arbitrary functions.

1. Introduction

One of the principal motivations for developing efficient procedures for constructing exact
solutions of nonlinear multidimensional partial differential equations (PDEs) was not to get
some particular solutions as such but to obtain broad families of these in order to be able
to solve some initial-value or boundary problems for PDEs. It is generally recognized that
for the multidimensional case the most powerful and systematic method for constructing
exact solutions of PDEs having non-trivial symmetry is the symmetry reduction routine
[1, 2]. The principal idea of this approach is a reduction of PDE under study to PDEs in
two or one independent variables using special substitutions (ansatzes, invariant solutions).
Given a symmetry group, the procedure of constructing a complete (in some sense) set of
inequivalent ansatzes is fairly algorithmic. For a number of principal nonlinear equations
of the mathematical and theoretical physics (the wave, Dirac, Maxwell,SU(2) Yang–Mills,
Navier–Stokes equations) the problem of symmetry reduction has already been solved in
a full generality [3–7]. This progress was possible due to a number of strong results on
subgroup classification of principal symmetry groups of modern physics, of the Poincaré
and Galilei groups and their extensions and different generalizations [8–11]. Using so
constructed ansatzes, broad families of exact solutions of the above-mentioned PDEs have
been constructed. However, with all the importance of these results they, in fact, cannot
be applied to solving initial value or boundary problems since these solutions, as a rule,
contain no arbitrary functions. Only for the case when the symmetry group of the equation
under study is infinite dimensional is there a regular procedure (generating solutions by final
transformations from the symmetry group see, e.g. [1, 2]) enabling us to get exact solutions
containing arbitrary functions.

By these very reasons there is much activity aimed at exploring non-classical
(conditional) symmetries of multidimensional PDEs in order to get exact solutions involving
arbitrary functions. Although non-classical (conditional) symmetries of differential
equations were introduced long ago (see [12] and also [13–17]) a problem of constructing
conditional symmetries of multidimensional nonlinear PDEs still remains a challenging one.
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The reason is quite obvious, since finding a conditional symmetry of PDE for a functionu

of n variables requires solving an over-determined system of PDEs inn + 1 dimensions.
That is why a progress in investigating conditional symmetries of multidimensional (n > 2)
PDEs relies heavily on the existence of efficient methods for handling over-determined
systems of PDEs in four and higher dimensions.

In [15, 18–21] we have developed a technique enabling us to integrate some (1+ 3)-
dimensional Poincaré-invariant over-determined systems of PDEs. Using these results we
have constructed broad classes of ansatzes corresponding to conditional symmetries of the
nonlinear wave, Dirac and Yang–Mills equations [7]. An underlying idea of our approach
is quite simple and based on the following observation. We have noted that quite a few
invariant solutions (i.e. solutions obtained via symmetry reduction routine) of the above
enumerated equations are particular cases of more general solutions which correspond to
the conditional symmetry of the equations under study and can be efficiently constructed
in explicit form. Putting this idea in a more mathematical way we have formulated the
following scheme of conditional symmetry reduction [7].

(1) The maximal (in Lie sense) invariance group of the equation under study is found
by the Lie method.

(2) Subgroup analysis of the invariance group is carried out, each subgroup giving rise
to some ansatz which reduces PDE in question to an equation having a smaller dimension.
As a rule, ansatzes obtained in this way have a quite definite structure which is determined
by the representation of the symmetry group.

(3) The general form of the invariant ansatz is obtained. This ansatz includes several
scalar functionsθ1, . . . , θN satisfying some compatible over-determined system of nonlinear
PDEs (reduction conditions).

(4) Equations forθ1, . . . , θN are integrated.
In this way we have obtained a generalization of the well known meron and instanton

solutions of the nonlinear Dirac equations obtained with the help of the Heisenberg ansatz
[22, 23]. Namely, we have constructed the class of exact solutions involving three arbitrary
functions such that choosing these to be equal to zero yields the above-mentioned solutions.
Furthermore, we have constructed generalizations of the invariant solutions of the wave
equation with cubic nonlinearity giving rise to the instanton and meron solutions of the
Yang–Mills equations obtainable via the ’t Hooft–Corrigan–Fairlie–Wilczek ansatz (see,
e.g. [24]).

However, our previous studies were restricted to investigating non-classical reductions
of PDEs either to ordinary differential equations or to PDEs in two independent variables,
one of them being parametrical. Speaking about the parametrical variable we mean that
the corresponding equation contains no derivatives with respect to this variable though the
coefficients of the equation may depend on it.Any solution of a reduced equation of this
kind that involves arbitrary parameters (say, integration constants) will automatically depend
on arbitrary functions. In view of a striking progress in integrating of a number of two-
and even three-dimensional PDEs by the inverse scattering technique it would be of great
interest to utilize our approach to obtain conditional symmetry reductions to differential
equations in two independent variables with a third parametrical variable. This might open
a possibility to apply the results of the soliton theory to get new exact solutions containing
arbitrary functions.

In this paper we investigate reductions of the nonlinear wave equation

� u = F(u) (1)

to PDEs in three independent variables such that one of the variables is parametrical. Here
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� = ∂2/∂x2
0 −1 is the d’Alembert operator,u = u(x0, x1, x2, x3) is a real-valued function

andF(u) is an arbitrary smooth function. Using these reductions we construct new families
of exact solutions of equations (1) containing several arbitrary functions of one variable.

2. Conditional symmetry of the nonlinear wave equation

In what follows we will adapt the procedure described in the introduction in order to
construct exact solutions of the nonlinear wave equation (1) containing arbitrary functions.
The approach is based on the observation that there exist dimensional reductions of
equation (1) by subgroups of the Poincaré group such that reduced equations do not contain
derivatives with respect to one of the new independent variables. The simplest example is
the ansatz

u(x) = ϕ(ω0 ≡ x0+ x3, ω1 ≡ x1, ω2 ≡ x2). (2)

Inserting (2) into equation (1) yields the reduced PDE:

ϕω1ω1 + ϕω2ω2 = −F(ϕ)
that contains no derivatives with respect toω0. Consequently, any solution of the above
PDE containing arbitrary integration constants will automatically include arbitrary functions
of ω0. This is an efficient way of constructing exact solutions of the nonlinear wave equation
that contain arbitrary functions.

So it is natural to generalize the above scheme and to develop a regular procedure for
obtaining more general reductions giving rise to PDEs with a parametrical variable. To this
end let us consider a general form of the Poincaré-invariant ansatz

u(x) = ϕ(ω0, ω1, . . . , ωn) (3)

wheren = 0, 1, 2 andωµ are some functions ofx (see, e.g. [3]). We pose the following
problem, namely, to describe all the functionsωµ(x) such that inserting ansatz (3) into
equation (1) yields a PDE that does not contain derivatives with respect to some of the
variablesωµ (this means that they are parametrical variables). As an easy calculation
shows, each parametric variable has to fulfil the following nonlinear system:

ωxµωxµ = 0 � ω = 0. (4)

Hereafter, the summation convention over the repeated indices is used, raising and
lowering the indices being performed with the help of the metric tensor of the Minkowski
spacegµν = diag(1,−1,−1,−1). For example,ωxµ stands for

gµνωxν =
{
ωx0 µ = 0

−ωxa µ = a = 1, 2, 3.

It is one of the geometrical properties of the Minkowski spacetime that each two isotropic
vectors are linearly dependent. That is why there is no more than one parametrical variable.
Furthermore, it is not difficult to show that the casen = 0, when the only variable contained
in the ansatz (5) is parametrical, gives rise to the reduction 0= F(ϕ) and therefore is
uninteresting. So the only cases when non-trivial results could be expected aren = 1 and
n = 2 and furthermore the variableω0 is parametrical. Providedn = 1 the problem has
been completely solved in [4]. In the following, we give its general solution for the case
n = 2. Namely, we describe all the ansatzes of the form

u(x) = ϕ(ω0(x), ω1(x), ω2(x)) (5)
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such that the following restrictions are satisfied:
• inserting the ansatz (5) into equation (1) yields a PDE forϕ(ω0, ω1, ω2) with

coefficients depending on ‘new’ dependent variablesω0, ω1, ω2 only, and
• coefficients of derivatives with respect toω0 vanish identically.
A simple computation yields that in order to meet the above requirements the functions

ω0, ω1, ω2 have to satisfy the following over-determined system of nonlinear PDEs:

ω0xµω0xµ = 0 ω0xµω1xµ = 0 ω0xµω2xµ = 0

ω1xµω1xµ = F1 ω1xµω2xµ = F2 ω2xµω2xµ = F3

�ω0 = 0 � ω1 = G1 � ω2 = G2.

(6)

HereF1, F2, F3,G1,G2 are arbitrary smooth functions ofω0, ω1, ω2.
Provided the above equations are satisfied, we get the following equation for the new

unknown functionϕ(ω0, ω1, ω2):

F1ϕω1ω1 + 2F2ϕω1ω2 + F3ϕω2ω2 +G1ϕω1 +G2ϕω2 = F(ϕ). (7)

Initially, the problem of integrating system (6) seems to be hopeless. Indeed, we have
to integrate the system of nine nonlinear PDEs in four dimensions. However, the system in
question has three remarkable properties, namely,

(a) it is strongly over-determined,
(b) it is compatible, and
(c) it contains as a subsystem the system (4) which is integrable (see, e.g. [4]).
These very properties enable us to find an efficient procedure for constructing the general

solution of the system of nonlinear PDEs (6). Before formulating the final result we make
an important remark. As may be easily verified, the class of equations (6) is invariant with
respect to an arbitrary transformation of dependent variables of the form

ω0 = �0(ω0) ωi = �i(ω0, ω1, ω2) i = 1, 2. (8)

With the use of this fact we simplify the system under study and choose

(1)F1 = ±1 F3 = ∓1 F2 = 0 under1 > 0

(2)F1 = ±1 F3 = ±1 F2 = 0 under1 < 0

(3)F1 = ±1 F3 = 0 F2 = 0 under1 = 0

(9)

where1 stands forF 2
2 − F1F3. Note that the above classification of the right-hand sides

of (6) corresponds to transforming PDE (7) to one of the three canonical types, hyperbolic,
elliptic and parabolic, respectively.

Thus, without loss of generality we can consider instead of the general system (6) its
three particular forms given by relations (9).

Theorem 1.The general solution of the system of PDEs (6), where right-hand sides are given
by one of formulae (9), splits into two inequivalent classes which are presented below

(1) ω0(x) = θµxµ, ω1(x) = bµxµ, ω2(x) = cµxµ,
(2) ω0(x) is defined in an implicit way

Aµ(ω0)x
µ + B(ω0) = 0

whereAµ,B are arbitrary sufficiently smooth functions satisfying the relationAµA
µ = 0,

and

ω1(x) = (−ȦµȦµ)− 1
2 (Ȧνx

ν + Ḃ)
ω2(x) = (−ȦµȦµ)− 3

2 εµναβA
µȦνÄαxβ.
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Hereθµ, bµ, cµ are arbitrary real constants satisfying the constraints

θµθ
µ = θµbµ = θµcµ = bµcµ = 0 bµb

µ = cµcµ = −1

a dot over the symbol means differentiation with respect toω0 and

εµναβ =


1 (µ, ν, α, β) = cycle (0,1,2,3)

−1 (µ, ν, α, β) = cycle (1,0,2,3)

0 in other cases.

We do not present here the proof which is rather involved and cumbersome. The
technique used to integrate system (9) is based on a proper modification of the hodograph
transformation suggested in [4].

Thus we get an exhaustive description of inequivalent ansatzes (5) reducing the nonlinear
wave equation (1) to PDE (7). According to theorem 1, there are two inequivalent classes
of such ansatzes, namely

u(x) = ϕ(θµxµ, bµxµ, cµxµ) (10)

u(x) = ϕ
(
ω0,

Ȧνx
ν + Ḃ

(−ȦµȦµ) 1
2

,
εµναβA

µȦνÄαxβ

(−ȦµȦµ) 3
2

)
. (11)

The ansatz (10) is invariant with respect to the translation group having the generator

Q1 = θµ ∂

∂xµ

and, consequently, can be obtained by the symmetry reduction routine. The ansatz (11) is an
essentially new one. It corresponds to the following conditional symmetry of the nonlinear
wave equation:

Q2 = Aµ(ω0)
∂

∂xµ
.

The fact that (11) is the general solution of PDEQ2u(x) = 0 is established by a
direct computation. Next, acting with the second prolongationQ̃2 of the operatorQ2

on equation (1) yields

Q̃2(�u− F(u)) = 2(Ȧµx
µ + Ḃ)−1Ȧν

∂

∂xν
Q2u.

Hence it immediately follows that the system of PDEs

�u = F(u) Q2u = 0

is invariant with respect to the one-parameter Lie transformation group having the
generatorQ2.

3. Exact solutions

Inserting the ansatz (11) into equation (1) yields the following PDE for the function
ϕ(ω0, ω1, ω2):

ϕω1ω1 + ϕω2ω2 +
2

ω1
ϕω1 = −F(ϕ). (12)

Remarkably, if the initial equation is the linear Klein–Gordon–Fock equation, i.e. if
F(u) = −m2u, m = constant, then the above equation is reduced to the Helmholtz equation

φω1ω1 + φω2ω2 = m2φ
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with the help of the change of the dependent variable

ϕ(ω0, ω1, ω2) = ω−1
1 φ(ω0, ω1, ω2).

The Helmholtz equation can be integrated by the method of separation of variables
[25]. In particular, ifm = 0 (which means that equation (1) is the d’Alembert equation), it
reduces to the Laplace equation whose general solution reads

φ = U(ω0, z)+ U(ω0, z
∗).

HereU is an arbitrary function analytic with respect to the variablez = ω1 + iω2 and z∗

stands for the complex conjugate ofz. Using this result we get the following class of exact
solutions of the d’Alembert equation:

u(x) = (−ȦµȦµ) 1
2

Ȧνxν + Ḃ

[
U

(
ω0,

Ȧνx
ν + Ḃ

(−ȦµȦµ) 1
2

+ i
εµναβA

µȦνÄαxβ

(−ȦµȦµ) 3
2

)

+ U
(
ω0,

Ȧνx
ν + Ḃ

(−ȦµȦµ) 1
2

− i
εµναβA

µȦνÄαxβ

(−ȦµȦµ) 3
2

)]
.

It is not difficult to become convinced of the fact that nonlinear equation (12) is
conditionally invariant with respect to the one-parameter group generated by the operator
Q = ∂/∂ω1. Inserting an ansatzϕ = ϕ(ω0, ω2) invariant with respect to this group into
(12) yields the two-dimensional PDE

ϕω2ω2 = −F(ϕ)
that contains the variableω0 as a parameter. Consequently, the above equation can be
treated as an ordinary differential equation with respect toω1. Its general solution after
being inserted into formula (11) gives the following class of exact solutions of the nonlinear
wave equation (1):

u(x) = ϕ
(
ω0,

εµναβA
µȦνÄαxβ

(−ȦµȦµ) 3
2

)
(13)

where the functionϕ(ω0, ω2) is given by the quadrature∫ ϕ(ω0,ω2)
[
f (ω0)− 2

∫ t

F (τ ) dτ

]−1/2

dt = ω2+ g(ω0).

In a similar way using classical and conditional symmetries of PDE (12) we have
obtained new exact solutions of the nonlinear d’Alembert equation with the power
nonlinearity

� u = λuk k 6= 0, 1 (14)

which are listed below.
(1) k is an arbitrary real number

u(x) =
[

4(k − 2)

λ(k − 1)2

] 1
k−1
(
− (εµναβA

µȦνÄαxβ)2

(ȦµȦµ)3
− (Ȧνx

ν + Ḃ)2
ȦµȦµ

) 1
1−k

k 6= 2 (15)

u(x) =
[

2(k − 3)

λ(k − 1)2

] 1
k−1

(
Ȧνx

ν + Ḃ
(−ȦµȦµ) 1

2

) 2
1−k

k 6= 3. (16)
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(2) k = 3

u(x) =
[
− (εµναβA

µȦνÄαxβ)2

(ȦµȦµ)3
− (Ȧνx

ν + Ḃ)2
ȦµȦµ

]− 1
2

×ϕ
(
ω0,

1

2
ln

(
− (εµναβA

µȦνÄαxβ)2

(ȦµȦµ)3
− (Ȧνx

ν + Ḃ)2
ȦµȦµ

))
(17)

whereϕ(ω0, y) is given by the following quadrature:∫ ϕ(ω0,y)
(
−λ

2
t4+ t2+ f (ω0)

)− 1
2

dt = y + g(ω0).

(3) k = 5

u(x) = − ȦµȦ
µ

Ȧνxν + Ḃ
ϕ

(
ω0, ln

(
Ȧνx

ν + Ḃ
(−ȦµȦµ) 1

2

))
(18)

whereϕ(ω0, y) is given by the following quadrature:∫ ϕ(ω0,y)
(
−λ

3
t4+ 1

4
t2+ f (ω0)

)− 1
2

dt = y + g(ω0).

We recall that in formulae (13), (15)–(18) the functionω0 = ω0(x) is determined
implicitly Aµ(ω0)x

µ + B(ω0) = 0 andAµ(ω0), B(ω0) are arbitrary sufficiently smooth
functions satisfying the equalityAµAµ = 0. Furthermore,f, g are arbitrary sufficiently
smooth functions ofω0. Provided, arbitrary functions are appropriately fixed, namely,

A0(ω0) = 1 A1(ω0) = ω0 A2(ω0) =
√

1− ω2
0 A3(ω0) = 0

and f = constant,g = constant, the above solutions reduce to the already known ones.
Indeed, with this choice of arbitrary functions the variablesω0, ω1, ω2 take the form

ω0 =
x1x0+ x2

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

ω1 =
√
x2

1 + x2
2 − x2

0 ω2 = x3. (19)

Given this form ofωµ,µ = 0, 1, 2 formulae (13), (15), (16) yield exact solutions of
equation (14) constructed by the symmetry reduction method in [5] and formulae (17),
(18) underf = constant,g = constant give solutions of equation (14) obtained by the same
method in [26]. Note that providedf = g = 0 and relations (19) hold, formula (17) yields
two particular classes of exact solutions of the cubic wave equation which in turn give rise
to the well known instanton and meron solutions of the Yang–Mills equations obtainable
via the ’t Hooft–Corrigan–Fairlie–Wilczek ansatz (see, e.g. [24]).

4. Concluding remarks

Thus, even for such a well-studied model as the nonlinear wave equation it is possible to
construct broad families of principally new exact solutions. It is a proper use of conditional
symmetries that enables us to generalize the well known and widely used exact solutions
in such a way that the new ones include arbitrary functions. However, a further progress in
this direction depends strongly on developing new more powerful symbolic computations
routines for integrating over-determined multidimensional systems of nonlinear PDEs.

The method suggested in this paper relies heavily upon information about the structure
of invariant solutions given by the specific representation of the Poincaré group realized on
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the set of solutions of the nonlinear wave equation. However, it can be easily modified
in order to take into account the structure of solutions invariant with respect to natural
extensions of the Poincaré group, namely, with respect to the similitude and conformal
groups. Furthermore, it is also possible to apply a similar approach for the sake of obtaining
exact solutions of complex wave equations containing arbitrary functions.

On the other hand, the fact that PDEs considered are of hyperbolic type is crucial. The
problem of adapting of the approach suggested in this paper to parabolic (evolution) type
equations is completely open.

All of these problems are presently under study and will be reported in our future
publications.
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